Your conditions: 孟海江
  • Differences in motor cortex synaptic plasticity associated with two forms of exercise in older adults: Evidence from TMS studies

    Subjects: Psychology >> Physiological Psychology submitted time 2023-06-27

    Abstract:     Although studies have found that exercise can lead to changes in the plasticity of the motor cortex, little is known about the changes in primary motor cortex synaptic plasticity associated with different forms of exercise among older adults. The purpose of this study was to compare the differences in motor cortex synaptic plasticity associated with a small hand muscle among older adults who regularly participated in table tennis or tai chi or who were sedentary.
        Based on inclusion/exclusion criteria and their answers to a self-reported questionnaire, 54 older adults (60~70 years) were selected who often participated in table tennis (n=18) or tai chi (n=18) exercise or who were sedentary (n=18). The target muscle was the abductor pollicis brevis of the right hand. Motor cortex synaptic plasticity associated with the abductor pollicis brevis muscle was induced by a paired combination of peripheral nerve electrical stimulation and transcranial magnetic stimulation with an interval of 25 ms (PAS25). Single-pulse and double-pulse transcranial magnetic stimulation was applied to the left primary motor cortex to measure changes in motor evoked potentials (MEPs) and short-interval intracortical inhibition recorded in the abductor pollicis brevis muscle before and after PAS25, to compare the differences in primary motor cortex synaptic plasticity among the three groups.
        The results showed that mean MEP amplitudes immediately and 30 and 60 min after PAS25 in the table tennis group were significantly higher than those in sedentary group; mean MEP amplitudes immediately and 30 min after PAS25 in the tai chi group were significantly higher than those in the sedentary group; and mean MEP amplitudes immediately and 30 and 60 min after PAS25 in the table tennis group were significantly higher than those in the tai chi group. There were no differences in the short-interval intracortical inhibition at any time point after PAS25 among the three groups.
        These results indicated that regular participation in table tennis or tai chi can induce a sustained increase in primary motor cortex excitability in older adults and that there are differences in primary motor cortex synaptic plasticity in older adults associated with different forms of exercise. These results suggest that increased synaptic plasticity in the motor cortex may play an important role in the acquisition and promotion of motor skills during exercise in older adults.
     

  • 左侧背外侧前额叶在程序性运动学习中的作用

    Subjects: Psychology >> Social Psychology submitted time 2023-03-27 Cooperative journals: 《心理学报》

    Abstract: Procedural motor learning includes sequence learning and random learning. Neuroimaging studies have shown that the dorsolateral prefrontal cortex (DLPFC) and primary motor cortex (M1) play significant roles in procedural motor learning; however, the connectivity between the DLPFC and M1 and its relationship with different procedural motor learning are still unclear. In this study, the serial response time task (SRTT) and transcranial magnetic stimulation (TMS) were used to explore the differences in left DLPFC-M1 connectivity between the different types of procedural motor learning. In experiment 1, dual-site paired-pulse TMS was used to detect the optimal interval from the DLPFC to the M1. In experiment 2, the participants were divided into two groups that underwent sequence learning or random learning. Behavioral data, motor evoked potentials from the M1 and electrophysiological data of DLPFC-M1 connectivity were assessed before and after learning. The behavioral results showed that the learning effect of the sequence learning group was better. The electrophysiological results showed that motor evoked potentials from the M1 were the same before and after learning in both groups. At the optimal interval and appropriate stimulation intensity, the DLPFC-M1 connectivity in the sequence learning group was changed, and it was related to learning performance; however that in the random learning group was not significantly changed. The results suggest that enhanced connectivity between the DLPFC and M1 may be an important explanation for the better performance in sequence learning. The results provide robust electrophysiological evidence for the role of DLPFC in motor learning.

  • Functional role of the left dorsolateral prefrontal cortex in procedural motor learning

    Subjects: Psychology >> Physiological Psychology submitted time 2019-12-24

    Abstract: Procedural motor learning includes sequence learning and random learning. Neuroimaging studies have shown that the dorsolateral prefrontal cortex (DLPFC) and primary motor cortex (M1) play significant roles in procedural motor learning; however, the connectivity between the DLPFC and M1 and its relationship with different procedural motor learning are still unclear. In this study, the serial response time task (SRTT) and transcranial magnetic stimulation (TMS) were used to explore the differences in left DLPFC-M1 connectivity between the different types of procedural motor learning. In experiment 1, dual-site paired-pulse TMS was used to detect the optimal interval from the DLPFC to the M1. In experiment 2, the participants were divided into two groups that underwent sequence learning or random learning. Behavioral data, motor evoked potentials from the M1 and electrophysiological data of DLPFC-M1 connectivity were assessed before and after learning. The behavioral results showed that the learning effect of the sequence learning group was better. The electrophysiological results showed that motor evoked potentials from the M1 were the same before and after learning in both groups. At the optimal interval and appropriate stimulation intensity, the DLPFC-M1 connectivity in the sequence learning group was changed, and it was related to learning performance; however that in the random learning group was not significantly changed. The results suggest that enhanced connectivity between the DLPFC and M1 may be an important explanation for the better performance in sequence learning. The results provide robust electrophysiological evidence for the role of DLPFC in motor learning. "

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China