Loading web-font TeX/Math/Italic
您当前的位置: > 详细浏览

Extracting Transport Properties of Quark-Gluon Plasma from the Heavy-Quark Potential With Neural Networks in a Holographic Model

请选择邀稿期刊:
摘要: Using Kolmogorov-Arnold Networks (KANs), we construct a holographic model informed by lattice QCD data. This neural network approach enables the derivation of an analytical solution for the deformation factor w(r) and the determination of a constant g related to the string tension. Within the KANs-based holographic framework, we further analyze heavy quark potentials under finite temperature and chemical potential conditions. Additionally, we calculate the drag force, jet quenching parameter, and diffusion coefficient of heavy quarks in this paper. Our findings demonstrate qualitative consistency with both experimental measurements and established phenomenological model.

版本历史

[V1] 2025-04-29 17:36:36 ChinaXiv:202505.00064V1 下载全文
点击下载全文
预览
同行评议状态
待评议
许可声明
metrics指标
  •  点击量756
  •  下载量149
评论
分享
申请专家评阅