• 贝叶斯方差分析在JASP中的实现

    分类: 心理学 >> 心理统计 提交时间: 2024-04-16

    摘要: 贝叶斯统计应用于假设检验的方法——贝叶斯因子——在心理学研究中的应用日渐增加。贝叶斯因子能分别量化所支持的相应假设或模型的证据,进而根据其数值大小做出当前数据更支持哪种假设或模型的判断。然而,国内尚缺乏对方差分析的贝叶斯因子的原理与应用的介绍。基于此,本文首先介绍贝叶斯方差分析的基本思路及计算原理,并结合实例数据,展示如何在JASP中对五种常用的心理学实验设计(单因素组间设计、单因素组内设计、二因素组间设计、二因素组内设计和二因素混合设计)进行贝叶斯方差分析及如何汇报和解读结果。贝叶斯方差分析提供了一个能有效替代传统方差分析的方案,是研究者进行统计推断的有力工具。

  • 贝叶斯因子及其在JASP中的实现

    分类: 心理学 >> 心理统计 提交时间: 2018-05-08

    摘要: 统计推断在科学研究中起到关键作用,然而当前科研中最常用的经典统计方法——零假设检验(Null hypothesis significance test, NHST)却因难以理解而被部分研究者误用或滥用。有研究者提出使用贝叶斯因子(Bayes factor)作为一种替代和(或)补充的统计方法。贝叶斯因子是贝叶斯统计中用来进行模型比较和假设检验的重要方法,其可以解读为对零假设H0或者备择假设H1的支持程度。其与NHST相比有如下优势:同时考虑H0和H1并可以用来支持H0、不“严重”地倾向于反对H0、可以监控证据强度的变化以及不受抽样计划的影响。目前,贝叶斯因子能够很便捷地通过开放的统计软件JASP实现,本文以贝叶斯t检验进行示范。贝叶斯因子的使用对心理学研究者来说具有重要的意义,但使用时需要注意先验分布选择的合理性以及保持数据分析过程的透明与公开。

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心