• 基于过程数据的问题解决能力测量及数据分析方法

    Subjects: Psychology >> Social Psychology submitted time 2023-03-28 Cooperative journals: 《心理科学进展》

    Abstract: Problem-solving competence is an individual’s capacity to engage in cognitive processing to understand and resolve problem situations where a method of solution is not immediately obvious. The measurement of problem-solving competence requires the use of relatively more complex and real problem situations to induce the presentation of problem-solving behaviors. This brings challenges to both the measurement methods of problem-solving competence and the corresponding data analysis methods. Using virtual assessments to capture the process data in problem-solving and mining the potential information contained therein is a new trend in measuring problem-solving competence in psychometrics. Firstly, this paper reviews the development of measurement methods from pen-and-paper tests to virtual assessments. Compared with the traditional paper-and-pencil test, modern virtual assessments are not only conducive to simulating real problem situations, improving the ecological validity of the test, but also can record the process data generated by individuals in the process of problem-solving. Process data refers to man-machine or man-human interaction data with timestamps that can reflect the process of individual problem-solving. It records the detailed steps of individual problem solving and reflects the strategy and cognitive process of individual problem-solving. However, it is not easy to adopt effective methods to analyze process data. Secondly, two methods of analyzing process data are summarized and compared: data mining methods and statistical modeling methods. Data mining is the process of using algorithms to uncover new relationships, trends, and patterns from big data. It is a bottom-up, data-driven research method that focuses on describing and summarizing data. Its advantage is that it can use existing algorithms to analyze a variety of process data at the same time, screen out variables related to individual problem-solving competence, and realize the classification of individual problem-solving competence. But sometimes, different algorithms could get different conclusions based on the same data, which leads to part of the results can not be explained. This method can not construct variables that can reflect the individual's latent trait, either. Statistical modeling method mainly refers to the method of analyzing data by using the idea of artificial modeling. It is a top-down, theory-driven approach. In statistical modeling, function models are generally constructed based on theoretical assumptions, and the observed variables are assumed to be randomly generated by the probability law expressed by the model. For the data recorded by virtual assessments, the existing modeling methods can be divided into three categories: psychometric joint modeling, hidden Markov modeling, and multi-level modeling. The main advantage of statistical modeling is that its results are easy to interpret and conform to the general process of psychological and educational research. Its limitation lies in that the modeling logic has not been unified yet because different types of process data need to be modeled separately. However, by giving full play to the advantages of the two data analysis methods, different problems in psychological and educational assessments can be dealt with. The interpretability of the results is very important in psychological and educational measurements, which determines the dominant role of statistical modeling in process data analysis. Finally, the possible future research directions are proposed from five aspects: the influence of non-cognitive factors, the use of multimodal data, the measurements of the development of problem-solving competence, the measurements of other higher-order thinking competence, and the definition of the concept and structure of problem-solving competence.

  • 引入眼动注视点的联合-交叉负载多模态认知诊断建模

    Subjects: Psychology >> Social Psychology submitted time 2023-03-27 Cooperative journals: 《心理学报》

    Abstract: Students’ observed behavior (e.g., learning behavior and problem-solving behavior) comprises of activities that represent complicated cognitive processes and latent conceptions that are frequently systematically related to one another. Cognitive characteristics such as cognitive styles and fluency may differ between students with the same cognitive/knowledge structure. However, practically all cognitive diagnosis models (CDMs) that merely assess item response accuracy (RA) data are currently incapable of estimating or inferring individual differences in cognitive traits. With advances in technology-enhanced assessments, it is now possible to capture multimodal data, such as outcome data (e.g., response accuracy), process data (e.g., response times (RTs), and biometric data (e.g., visual fixation counts (FCs)), automatically and simultaneously during the problem-solving activity. Multimodal data allows for precise cognitive structure diagnosis as well as comprehensive feedback on various cognitive characteristics. First, using joint analysis of RA, RT, and FC data as an example, this study elaborated three multimodal data analysis methods and models, including separate modeling (whose model is denoted as S-MCDM), joint- hierarchical modeling (whose model is denoted as H-MCDM) (Zhan et al., 2022), and joint-cross-loading modeling (whose model is denoted as C-MCDM). Following that, three C-MCDMs with distinct hypotheses were presented based on joint-cross-loading modeling, namely, the C-MCDM-θ, C-MCDM-D, and C-MCDM-C, respectively. Three C-MCDMs, in comparison to the H-MCDM, introduce two item-level weight parameters (i.e., φi and λi) into the RT and FC measurement models, respectively, to quantify the impact of latent ability or latent attributes on RT and FC. The Markov Chain Monte Carlo method was used to estimate model parameters using a full Bayesian approach. To illustrate the three proposed models’ application and compare them to the S-MCDM and H-MCDM, multimodal data for a real-world mathematics test was used. Data was gathered at a prominent university on the East Coast of the United States in an eye-tracking lab. An I = 10 mathematics items test was given to N = 93 university students with normal or corrected vision. The test included K = 4 attributes, and the related Q-matrix is shown in Figure 3. The data is divided into three modalities: RA, RT, and FC, which were all collected at the same time. The data was fitted to all five multimodal models. In addition, two simulation studies were conducted further to explore the psychometric performance of the proposed models. The purpose of simulation study 1 was to explore whether the parameter estimates of the proposed models can converge effectively and explore the recovery of parameter estimation under different simulated test situations. The purpose of simulation study 2 was to explore the relative merits of C-MCDMs and H-MCDM, that is, to explore the necessity of considering cross-loading in multimodal data analysis. The results of the empirical study showed that (1) the C-MCDM-θ has the best model-data fitting, followed by the H-MCDM and the S-MCDM. Although the DIC showed that the C-MCDM-D and C-MCDM-C also fitted the data well, the results were only for reference because some parameter estimates in these two models did not converge; that (2) the correlation coefficients between latent ability and latent processing speed and that between latent ability and latent concentration were weak, making it difficult to fully exploit the theoretical advantages of H-MCDM over S-MCDM (Ranger, 2013). By contrast, since the C-MCDM-θ can directly utilize the information from RT and FC data, the standard error of the estimates of its latent ability was significantly lower than that of the previous two competing models; and that (3) the median of the estimates of φi was less than 0, which indicated that for most items, the higher the participant’s latent ability is, the longer the time it will take to solve the items; and the median of the estimates of λi was higher than 0, which indicated that for most items, the higher the participant’s latent ability is, the more number of fixation counts he/she shown in problem-solving. Furthermore, it should be noted that the estimates of φi and λi do not always have the same sign for different items, indicating that the influence of latent abilities on RT and FC has different directions (i.e., facilitation or inhibition) for different items. Furthermore, simulation study 1 indicated that the parameter estimation of the proposed three models could converge effectively and the recovery of model parameters was good under different simulated test situations. The results of simulation study 2 indicated that the adverse effects of ignoring the possible cross- loadings are more severe than redundantly considering the cross-loadings. Overall, the results of this study indicate that (1) fusion analysis is more suitable for multimodal data that provides parallel information than separate analysis; that (2) through cross-loading, the proposed models can directly use information from RT and FC data to improve the parameter estimation accuracy of latent ability or latent attributes; that (3) the results of the proposed models can be used to diagnose cognitive structure and infer other cognitive characteristics such as cognitive styles and fluency; and that (4) the proposed models have better compatibility with different test situations than H-MCDM.

  • Joint-Cross-Loading Multimodal Cognitive Diagnostic Modeling Incorporating Visual Fixation Counts

    Subjects: Psychology >> Psychological Measurement submitted time 2021-11-30

    Abstract: Students' observed behavior (e.g., learning behavior and problem-solving behavior) comprises of activities that represent complicated cognitive processes and latent conceptions that are frequently systematically related to one another. Cognitive characteristics such as cognitive styles and fluency may differ between students with the same cognitive/knowledge structure. However, practically all cognitive diagnosis models (CDMs) that merely assess item response accuracy (RA) data are currently incapable of estimating or inferring individual differences in cognitive traits. With advances in technology-enhanced assessments, it is now possible to capture multimodal data, such as outcome data (e.g., response accuracy), process data (e.g., response times (RTs), and biometric data (e.g., visual fixation counts (FCs)), automatically and simultaneously during the problem-solving activity. Multimodal data allows for precise cognitive structure diagnosis as well as comprehensive feedback on various cognitive characteristics. First, using joint analysis of RA, RT, and FC data as an example, this study elaborated three multimodal data analysis methods and models, including separate modeling (whose model is denoted as S-MCDM), joint-hierarchical modeling (whose model is denoted as H-MCDM) (Zhan et al., 2021), and joint-cross-loading modeling (whose model is denoted as C-MCDM). Following that, three C-MCDMs with distinct hypotheses were presented based on joint-cross-loading modeling, namely, the C-MCDM-θ, C-MCDM-D, and C-MCDM-C, respectively. Three C-MCDMs, in comparison to the H-MCDM, introduce two item-level weight parameters (i.e., φi and λi) into the RT and FC measurement models, respectively, to quantify the impact of latent ability or latent attributes on RT and FC. The Markov Chain Monte Carlo method was used to estimate model parameters using a full Bayesian approach. To illustrate the three proposed models' application and compare them to the S-MCDM and H-MCDM, multimodal data for a real-world mathematics test was used. Data was gathered at a prominent university on the East Coast of the United States in an eye-tracking lab. An I = 10 mathematics items test was given to N = 93 university students with normal or corrected vision. The test included K = 4 attributes, and the related Q-matrix is shown in Figure 3. The data is divided into three modalities: RA, RT, and FC, which were all collected at the same time. The data was fitted to all five multimodal models. In addition, two simulation studies were conducted further to explore the psychometric performance of the proposed models. The purpose of simulation study 1 was to explore whether the parameter estimates of the proposed models can converge effectively and explore the recovery of parameter estimation under different simulated test situations. The purpose of simulation study 2 was to explore the relative merits of C-MCDMs and H-MCDM, that is, to explore the necessity of considering cross-loading in multimodal data analysis. The results of the empirical study showed that (1) the C-MCDM-θ has the best model-data fitting, followed by the H-MCDM and the S-MCDM. Although the DIC showed that the C-MCDM-D and C-MCDM-C also fitted the data well, the results were only for reference because some parameter estimates in these two models did not converge; that (2) the correlation coefficients between latent ability and latent processing speed and that between latent ability and latent concentration were weak, making it difficult to fully exploit the theoretical advantages of H-MCDM over S-MCDM (Ranger, 2013). By contrast, since the C-MCDM-θ can directly utilize the information from RT and FC data, the standard error of the estimates of its latent ability was significantly lower than that of the previous two competing models; and that (3) the median of the estimates of φi was less than 0, which indicated that for most items, the higher the participant’s latent ability is, the longer the time it will take to solve the items; and the median of the estimates of λi was higher than 0, which indicated that for most items, the higher the participant’s latent ability is, the more number of fixation counts he/she shown in problem-solving. Furthermore, it should be noted that the estimates of φi and λi do not always have the same sign for different items, indicating that the influence of latent abilities on RT and FC has different directions (i.e., facilitation or inhibition) for different items. Furthermore, simulation study 1 indicated that the parameter estimation of the proposed three models could converge effectively and the recovery of model parameters was good under different simulated test situations. The results of simulation study 2 indicated that the adverse effects of ignoring the possible cross-loadings are more severe than redundantly considering the cross-loadings. Overall, the results of this study indicate that (1) fusion analysis is more suitable for multimodal data that provides parallel information than separate analysis; that (2) through cross-loading, the proposed models can directly use information from RT and FC data to improve the parameter estimation accuracy of latent ability or latent attributes; that (3) the results of the proposed models can be used to diagnose cognitive structure and infer other cognitive characteristics such as cognitive styles and fluency; and that (4) the proposed models have better compatibility with different test situations than H-MCDM.

  • The Measurement of Problem-Solving Competence Using Process Data

    Subjects: Psychology >> Psychological Measurement submitted time 2021-10-04

    Abstract: Problem-solving competence is an individual’s capacity to engage in cognitive processing to understand and resolve problem situations where a method of solution is not immediately obvious. The measurement of problem-solving competence requires the use of relatively more complex and real problem situations to induce the presentation of problem-solving behaviors. This brings challenges to both the measurement methods of problem-solving competence and the corresponding data analysis methods. Using virtual assessments to capture the process data in problem-solving and mining the potential information contained therein is a new trend in measuring problem-solving competence in psychometrics. To begin with, we reviewed the development of the measurement methods of problem-solving competence: from paper-and-pencil tests to virtual assessments. In addition, we summarized two types of process data analysis methods: data mining and statistical modeling. Finally, we look forward to possible future research directions from five perspectives: the influence of non-cognitive factors on problem-solving competence, the use of multimodal data to measure problem-solving competence, the measurement of the development of problem-solving competence, the measurement of other higher-order thinking competencies, and the definition of concept and structure of problem-solving competence.

  • The multidimensional log-normal response time model: An exploration of the multidimensionality of latent processing speed

    Subjects: Psychology >> Psychological Measurement Subjects: Psychology >> Statistics in Psychology submitted time 2020-05-25

    Abstract: With the popularity of computer-based testings, the collection of item response times (RTs) and other process data has become a routine in large- and small-scale psychological and educational assessments. RTs not only provide information about the processing speed of respondents but also could be utilized to improve the measurement accuracy because the RTs are considered to convey a more synoptic depiction of the participants’ performance beyond responses alone. In multidimensional assessments, various skills are often required to answer questions. The speed at which persons were applying a set of skills reflecting distinct cognitive dimensions could be considered as multidimensional as well. In other words, each latent ability was measured simultaneously with its corresponding working efficiency of applying a facet of skills in a multidimensional test. For example, the latent speed corresponding to the latent ability of decoding of an algebra question may differ from encoding. Therefore, a multidimensional RT model is needed to accommodate this scenario, which extends various currently proposed RT models assuming unidimensional processing speed.? To model the multidimensional structure of the latent processing speed, this study proposed a multidimensional log-normal response time model (MLRT) model, which is an extension of the unidimensional log-normal response time model (ULRTM) proposed by van der Linden (2006). Model parameters were estimated via the full Bayesian approach with the Markov chain Monte Carlo (MCMC). A PISA 2012 computer-based mathematics RT dataset was analyzed as a real data example. This dataset contains RTs of 1581 participants for 9 items. A Q-matrix (see Table 1) was prespecified based on the PISA 2012 mathematics assessment framework (see Zhan, Jiao, Liao, 2018); three dimensions were defined based on the mathematical content knowledge, which are: 1) change and relationships (θ1), 2) space and shape (θ2), and, 3) uncertainty and data (θ3). One thing to note is that the defined Q-matrix served as a bridge to link items to the corresponding latent abilities, which shows the multidimensional structure of latent abilities. First, exploratory factor analysis (EFA) was conducted with the real dataset to manifest the multidimensional structure of the processing speed. Second, two RT models, i.e., the ULRTM and the MLRTM, were fitted to the data, and the results were compared. Third, a simulation study was conducted to evaluate the psychometric properties of the proposed model. The results of the EFA indicated that the latent processing speed has a three-dimensional structure, which matches with the theoretical multidimensional structure of the latent abilities (i.e., the Q-matrix in Table 1). Furthermore, the ULRTM and the MLRTM yield adequate model data fits according to the posterior predictive model checking values (ppp?= 0.597 for the ULRTM and?ppp?= 0.633 for the MLRTM). Furthermore, by comparing the values of the –2LL, DIC, and WAIC across the ULRTM and the MLRTM, the results indicate that the MLRTM fits the data better. In addition, the results show that (1) the correlations among three dimensions vary from medium to large (from 0.751 to 0.855); (2) the time-intensity parameters estimates of the two models were similar to each other. However, in terms of the time-discrimination parameters, the estimates of the ULRTM were slightly lower than the MLRTM. Moreover, the results from the simulation study show: 1) the model parameters were fully recovered with the Bayesian MCMC estimation algorithm; 2) the item time-discrimination parameter could be underestimated if the multidimensionality of the latent processing speed gets ignored, which meets our expectation, whereas the item time-intensity parameter stayed the same. Overall, the proposed MLRTM performed well with the empirical data and was verified by the simulation study. In addition, the proposed model could facilitate practitioners in the use of the RT data to understand participants' complex behavioral characteristics."

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China