• 新生儿语音感知的神经基础:元分析

    Subjects: Psychology >> Developmental Psychology submitted time 2023-03-28 Cooperative journals: 《心理科学进展》

    Abstract: Speech processing is the core function of language cognition, and the brain mechanism of speech processing are an important topic in linguistics and cognitive psychology. However, it is unclear that how the newborn's brain perceives speech. The purpose of this review is to investigate the brain mechanism of speech perception in newborns. We found that human beings have a relatively well-developed speech processing mechanism during the neonatal period. While the left frontal lobe (especially the inferior frontal gyrus) plays an important role in detecting speech structure, the bilateral temporal lobes are responsible for detecting speech deviation. In addition, the left hemisphere has an advantage in mother tongue perception.

  • 外显和内隐情绪韵律加工的脑机制:近红外成像研究

    Subjects: Psychology >> Social Psychology submitted time 2023-03-27 Cooperative journals: 《心理学报》

    Abstract: Emotional expressions of others embedded in speech prosodies are important for social interactions. Affective prosody refers to a way to express and convey emotions through the dynamic changes of various acoustic cues such as pitch, intensity, stress, and intonation in speech, without relying on vocabulary and grammatical structure. Previous studies have shown that STC, IFG, OFC, and other cerebral cortex and subcortical structures are involved in emotional prosody processing, and gradually formed a hierarchical model. However, existing studies on the neural mechanism of emotional prosody processing mostly focus on the difference between non-neutral emotional prosody and neutral prosody, while the comparison between various non-neutral emotional prosody is less investigated. Besides, the differences involved in brain regions of emotional prosody processing under explicit and implicit tasks are still not clear. Furthermore, it is necessary to further accumulate experimental evidence based on noise-free brain imaging technology, such as the noise-free features of fNIRS are especially suitable for speech processing research.This study used functional near-infrared spectroscopy to investigate how speech prosodies of different emotional categories are processed in the cortex under different task conditions. A group of 25 college students participated in this study with a 3 (emotion: anger vs. fearful vs. happy) by 2 (task focus: explicit vs. implicit) within-participant factorial design. We manipulated task focus by adopting two different tasks, with emotional discrimination task as explicit condition and sex discrimination task as implicit condition. Ten phonological materials for each of anger, fearful, and happy prosody were selected from the Chinese Speech Emotion Database and consisted of the corresponding emotional prosodies and neutral prosodies. The emotional explicit task was to count the emotional and neutral sentences contained in each 10-second speech, and the emotional implicit task was to count the sentences played by two women in each 10-second speech. A multi-channel fNIRS system was used to record brain activity in a continuous waveform. According to existing literature, the brain regions observed in this study are the bilateral frontal and temporal lobes. Therefore, we used 13 emitters and 15 detectors to form 37 effective observation channels.We first adopted NirSpark-2442 software to preprocess the data, and then conducted general linear model analyses to calculate the cortical activation related to the task. The results showed that the brain activation was significantly higher when anger was contrasted to fearful and happy prosody in left frontal pole / orbitofrontal cortex, and when happy was contrasted to fearful and anger prosody in left inferior frontal gyrus, and when fearful was contrasted to anger and happy prosody in right supramarginal gyrus. Importantly, there was an interaction between emotion and task. In the explicit task, cortex activity in the right supramarginal gyrus was more sensitive to fearful than to anger and happy prosodies. But no similar results were found under anger and happy prosody. In addition, the brain activation in temporopolar, superior temporal gyrus, and middle temporal gyrus with the explicit task was greater than that in the implicit task.The present study demonstrated the specific brain regions for processing angry, fearful and happy prosody were left frontal pole/orbitofrontal cortex, right supramarginal gyrus, and left inferior frontal gyrus respectively, and the important role of right superior temporal gyrus and right supramarginal gyrus in emotional explicit task. These findings partially support the hierarchical model of emotional prosody and question the third level of the model.

  • 0~1岁婴儿情绪偏向的发展:近红外成像研究

    Subjects: Psychology >> Social Psychology submitted time 2023-03-27 Cooperative journals: 《心理学报》

    Abstract: People tend to give priority to negative information and allocate more cognitive resources such as perception, attention and memory to negative, compared to positive, information. This phenomenon is called “negativity bias”, which is well established across toddlers, children, adolescents and adults. However, this emotional bias remains controversial in infants, especially in young infants that are less than six months old. Furthermore, it is still unclear whether the emotional bias changes from no bias or positivity bias to negativity bias during infants’ development in the first year of life. In this study, we used near-infrared spectroscopy to examine the neural responses to angry and happy prosodies in 45 neonates (0 month old) and 45 infants (one year old). The experiment was conducted in the neonatal ward of Peking University First Hospital. NIRS data were recorded when the infants were at active sleeping or staying quietly. Using a passive listening task, we investigated the brain functional connectivity during automatic processing of emotional prosodies of anger and happiness. The experiment was divided into three emotional blocks (using angry, happy and neutral prosodies, respectively). The order of the three blocks was counterbalanced among the participants. Each block contained 10 sentences, which were repeated six times, that is, 60 sentences were presented during the experiment in a random order. The results showed that emotion category had a significant main effect on 60 pairs of functional connectivity, which revealed that angry and happy prosodies evoked stronger functional connectivity than neutral prosody, whereas there was no significant difference between the angry and happy conditions. The observed significant functional connectivity was mainly distributed within the right hemisphere or across bilateral hemispheres. More importantly, there was an interaction between emotion category and group in the functional connectivity of frontal, temporal and parietal lobe of the right hemisphere. In the neonate group, the functional connectivity in the happy prosody condition was stronger than that in the angry prosody condition. By contrast, the functional connectivity in the infant group showed stronger connectivity in the angry compared to the happy condition. By examining the neural response to emotional prosodies at two time points (0 and 1 year old), this study revealed for the first time the changes of emotional bias in a developmental perspective. We found that emotional processing has a positive bias at the beginning of postnatal period, revealed by the stronger functional connectivity for happy than for angry prosodies at the right hemisphere of the superior temporal gyrus, the inferior frontal gyrus, the supramarginal gyrus, and the angular gyrus. However, the emotional processing bias reverses in 1-year-old infants, that is, the brain functional connectivity within the above mentioned brain regions is stronger for angry than that for happy prosodies. Therefore, the reliable phenomenon of “negativity bias” is not innate, although it is always observed in adults and children. Instead, we propose that there is a developmental change from positivity bias to negativity bias in the first year of human life.

  • Development of emotional bias in infants aged from 0 to 1 year old: A near-infrared spectroscopy study

    Subjects: Psychology >> Developmental Psychology submitted time 2022-12-26

    Abstract:

    People tend to give priority to negative information and allocate more cognitive resources such as perception, attention and memory to negative, compared to positive, information. This phenomenon is called "negativity bias", which is well established across toddlers, children, adolescents and adults. However, this emotional bias remains controversial in infants, especially in young infants that are less than six months old. Furthermore, it is still unclear whether the emotional bias changes from no bias or positivity bias to negativity bias during infants’ development in the first year of life. In this study, we used near-infrared spectroscopy to examine the neural responses to angry and happy prosodies in 45 neonates (0 month old) and 45 infants (one year old). The experiment was conducted in the neonatal ward of Peking University First Hospital. NIRS data were recorded when the infants were at active sleeping or staying quietly. Using a passive listening task, we investigated the brain functional connectivity during automatic processing of emotional prosodies of anger and happiness. The experiment was divided into three emotional blocks (using angry, happy and neutral prosodies, respectively). The order of the three blocks was counterbalanced among the participants. Each block contained 10 sentences, which were repeated six times, that is, 60 sentences were presented during the experiment in a random order. The results showed that emotion category had a significant main effect on 60 pairs of functional connectivity, which revealed that angry and happy prosodies evoked stronger functional connectivity than neutral prosody, whereas there was no significant difference between the angry and happy conditions. The observed significant functional connectivity was mainly distributed within the right hemisphere or across bilateral hemispheres. More importantly, there was an interaction between emotion category and group in the functional connectivity of frontal, temporal and parietal lobe of the right hemisphere. In the neonate group, the functional connectivity in the happy prosody condition was stronger than that in the angry prosody condition. By contrast, the functional connectivity in the infant group showed stronger connectivity in the angry compared to the happy condition. By examining the neural response to emotional prosodies at two time points (0 and 1 year old), this study revealed for the first time the changes of emotional bias in a developmental perspective. We found that emotional processing has a positive bias at the beginning of postnatal period, revealed by the stronger functional connectivity for happy than for angry prosodies at the right hemisphere of the superior temporal gyrus, the inferior frontal gyrus, the supramarginal gyrus, and the angular gyrus. However, the emotional processing bias reverses in 1-year-old infants, that is, the brain functional connectivity within the above mentioned brain regions is stronger for angry than that for happy prosodies. Therefore, the reliable phenomenon of "negativity bias" is not innate, although it is always observed in adults and children. Instead, we propose that there is a developmental change from positivity bias to negativity bias in the first year of human life.

  • 外显和内隐情绪韵律加工的脑机制:近红外成像研究

    Subjects: Psychology >> Cognitive Psychology submitted time 2020-09-18

    Abstract: "

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China